92 research outputs found

    Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal

    Get PDF
    The present study investigates correlations between an extensive range of geomorphic properties that can be estimated from a digital elevation model and the uplift rate on geological timescales. The analysis focuses on an area in the Siwalik Hills (central Nepal), where lithology and climate can be considered as uniform. This area undergoes rapid tectonic uplift at rates of up to 15 mm yr^(−1), which are derived from the geometric pattern of a fault-bend model of fold growth. The selected geomorphic properties can be divided in two categories, depending on whether or not the vertical dimension is taken into account. None of the planar properties are significantly correlated to uplift rate, unlike those that include the vertical dimension, such as the mean elevation of basins, hypsometric curve, and hypsometric integral, and relief defined by the amplitude factor of length scaling analysis. Correlation between relief and uplift rate is observed for all length scales of topography shorter than 600 m, which suggests that all orders of the streams are able to adjust to the tectonic signal. Simple mass balance considerations imply that the average elevation is only 10% of surface uplift, suggesting that a dynamic equilibrium has been reached quite rapidly. Using a simple two-process model for erosion, we find that fairly high diffusion coefficients (order of 10 m^2 yr^(−1)) and efficient transport of the material by rivers are required. This unusually high value for mass diffusivity at small length scales may be obtained by either a very efficient linear diffusion or by landsliding. Actually, both processes may be active, which appears likely given the nature of the unconsolidated substratum and the favorable climatic conditions. Local relief in the study area may therefore be used to predict either uplift or denudation, but the prediction is calibrated only for that specific climatic and lithologic conditions and cannot be systematically applied to other contexts

    Global heat flow trends resolved from multiple geological and geophysical proxies

    Get PDF
    International audienceBecause global coverage of heat flow measurements is still poor in many areas, empirical estimators based on the geology, the thermotectonic age or the velocity structure of the upper mantle have often been used to affect an estimate to regions where such measurements are absent. On the basis of the assumption that heat flow is strongly related to its geodynamic environment, one may integrate multiple proxies derived from a large body of global geo- logical and geophysical data sets assembled during the past decades; these should help to better capture the variety of present-day settings. This idea is illustrated through two simple empirical methods: both of them are based on a set of examples, where heat flow measure- ments are associated with relevant terrestrial observables such as surface heat production, upper-mantle velocity structure, tectono-thermal age, on a 1◦ × 1◦ grid. To a given target point owning a number of observables, the methods associate a heat flow distribution rather than a deterministic value to account for intrinsic variability and uncertainty within a defined geodynamic environment. The 'best combination method' seeks the particular combination of observables that minimizes the dispersion of the heat flow distribution generated from the set of examples. The 'similarity method' attributes a weight to each example depending on its degree of similarity with the target point. The methods are transparent and are able to handle sets of observables that are not available over the whole Earth (e.g. heat production). The resulting trends of the mean heat flow deduced from the two methods do not differ strongly, but the similarity method shows a better accuracy in cross-validation tests. These tests suggest that the selected proxies have the potential to recover at least partly medium- to large-scale features of surface heat flow. The methods depict the main global trends of low heat flow in stable and ancient regions, and thermal high in active orogens and rift zones. Broad thermal anomalies are outlined in the Sahara and in the tectonically active eastern part of Antarctica. The similarity method estimates a continental heat loss of 13.6 ± 0.8 TW (2σ uncertainty), which is consistent with previous estimates

    The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data

    Get PDF
    International audienceThe wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determinethe deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin.The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Itscurrent geometry shows first- and second-order segmentation: our study focusses on theAshawq–Salalah second-order segment, between Alula–Fartak and Socotra–Hadbeen fracturezones. Modelling of theWAS and gravity data (three profiles across and three along the margin)gives insights into the first- and second-order structures. (1) Continental thinning is abrupt(15–20 km thinning across 50–100 km distance). It is accommodated by several tilted blocks.(2) The ocean–continent transition (OCT) is narrow (15 km wide). The velocity modellingprovides indications on its geometry: oceanic-type upper-crust (4.5 km s−1) and continentaltypelower crust (>6.5 km s−1). (3) The thickness of the oceanic crust decreases from West(10 km) to the East (5.5 km). This pattern is probably linked to a variation of magma supplyalong the nascent slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6to 7.8 kms−1) exists at the crust-mantle interface below the thinned margin, the OCT and theoceanic crust. We interpret it as an underplated mafic body, or partly intruded mafic materialemplaced during a ‘post-rift’ event, according to the presence of a young volcano evidencedby heat-flow measurement (Encens-Flux survey) and multichannel seismic reflection (Encenssurvey). We propose that the non-volcanic passive margin is affected by post-rift volcanismsuggesting that post-rift melting anomalies may influence the late evolution of non-volcanicpassive margins

    Post-rift uplift of the Dhofar margin (Gulf of Aden)

    Get PDF
    International audienceAn investigation of the sedimentation pattern along the Dhofar margin allows us to describe its late-stage evolution. After the accumulation of a thick post-rift sedimentary succession, two debris flow events occurred at the foot of the slope. The first event, affecting a wide area of the margin, marks a major change in sedimentation. The second event is associated with a shift of sedimentary deposition from the slope toward the basin. This latter debris flow was caused by an uplift phase, and highlights two distinct deformational styles in the eastern and western part of the Dhofar margin. Both events occurred very late in the history of the margin, at least 7.6 Ma after the end of the rifting phase (35-17.6 Ma)

    Time and Origin of Cichlid Colonization of the Lower Congo Rapids

    Get PDF
    Most freshwater diversity is arguably located in networks of rivers and streams, but, in contrast to lacustrine systems riverine radiations, are largely understudied. The extensive rapids of the lower Congo River is one of the few river stretches inhabited by a locally endemic cichlid species flock as well as several species pairs, for which we provide evidence that they have radiated in situ. We use more that 2,000 AFLP markers as well as multilocus sequence datasets to reconstruct their origin, phylogenetic history, as well as the timing of colonization and speciation of two Lower Congo cichlid genera, Steatocranus and Nanochromis. Based on a representative taxon sampling and well resolved phylogenetic hypotheses we demonstrate that a high level of riverine diversity originated in the lower Congo within about 5 mya, which is concordant with age estimates for the hydrological origin of the modern lower Congo River. A spatial genetic structure is present in all widely distributed lineages corresponding to a trisection of the lower Congo River into major biogeographic areas, each with locally endemic species assemblages. With the present study, we provide a phylogenetic framework for a complex system that may serve as a link between African riverine cichlid diversity and the megadiverse cichlid radiations of the East African lakes. Beyond this we give for the first time a biologically estimated age for the origin of the lower Congo River rapids, one of the most extreme freshwater habitats on earth

    Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set

    Get PDF
    International audienceKey Points: 5 • This compilation of terrestrial heat flow includes almost 70,000 measurements 6 • c1 Measured oceanic heat flow is significantly higher with recent measurements c2 7 • Subsidence at heat flow sites is larger c3 than that determined at the global scale, 8 especially for ages >100 Ma 9 • A constant heat flow at the base of the lithosphere better explains heat flow and 10 subsidence data at heat flow sites 11 • Oceanic hydrothermal heat loss is c4 10.5 TW, i.e. 1.5 TW higher than previous 12 estimates, c5 which neglect the contribution of older than 65 Ma seafloor 13 • Continental heat flow is statistically consistent with previous analyses, but the dis-14 persion of values does not support a c6 significant relation with age 15 • Global heat loss based on measurements only ranges between 40-42 TW, close to 16 previous estimates using conductive cooling models c7 (45-47 TW) 17 • A generalized similarity method is used to map global variations of surface heat 18 flow c8 on a 0.5 • x 0.5 • grid. The best prediction is obtained for 14 observables. Abstract 20 The number of heat flow measurements at the Earth surface has significantly in-21 creased since the last global analysis (Pollack et al., 1993), and the most recent of them 22 provide insights into key locations. This paper presents a new compilation, which includes 23 approximately 70,000 measurements. Continental heat flow (67 mWm −2) does not change 24 significantly, but the differences are more important for oceanic heat flow. The diver-25 gence with conductive cooling models is reduced significantly for young ages of the seafloor, 26 since the most recent measurements (92 mWm −2) are significantly higher c1 on average 27 than the older ones (79 mWm −2). This is related to a better quality and a better sam-28 pling of measurements in regions affected by hydrothermal circulation. The total Earth 29 heat loss derived from these most recent measurements is estimated to ∼40-42 TW and 30 represents only 3-5 TW less than with a conductive cooling model (∼45-47 TW). Hy-31 drothermal heat loss in the oceanic domain is estimated with a new method based on 32 the ruggedness of the seafloor, and represents ∼1.5 TW more than previous estimates. 33 The heat flow variability on continents is so c2 large that defining a trend with stratigraphic 34 or tectono-thermal age is c3 very difficult. c4 On the other hand, additional geological and 35 geophysical information can be combined with age for better predictions and extrapo-36 lations. A generalized similarity method was used here to predict heat flow on a global 37 0.5 • x 0.5 • grid. The agreement with local measurements is generally good and increases 38 with the number and the quality of proxies

    Heat-flow and subsurface temperature history at the site of Saraya (eastern Senegal)

    Get PDF
    International audienceNew temperature measurements from eight boreholes in the West African Craton (WAC) reveal superficial perturbations down to 100 m below the alteration zone. These perturbations are both related to a recent increase in the surface air temperature (SAT) and to the site effects caused by fluid circulations and/or the lower conduction in the alterites. The ground surface temperature (GST), inverted from the boreholes temperatures, increased slowly in the past (∼0.4 • C from 1700 to 1940) and then, more importantly, in recent years (∼1.5 • C from 1940 to 2010). This recent trend is consistent with the increase of the SAT recorded at two nearby meteorological stations (Tambacounda and Kedougou), and more generally in the Sahel with a coeval rainfall decrease. Site effects are superimposed to the climatic effect and interpreted by advective (circulation of fluids) or conductive (lower conductivity of laterite and of high-porosity sand) perturbations. We used a 1-D finite differences thermal model and a Monte-Carlo procedure to find the best estimates of these site perturbations: all the eight borehole temperature logs can be interpreted with the same basal heat-flow and the same surface temperature history, but with some realistic changes of thermal conductivity and/or fluid velocity. The GST trend observed in Senegal can be confirmed by two previous borehole measurements made in 1983 in other locations of West Africa, the first one in an arid zone of northern Mali and the second one in a sub-humid zone in southern Mali. Finally, the background heat-flow is low (31 ± 2 mW m −2), which makes this part of the WAC more similar with the observations in the southern part (33 ± 8 mW m −2) rather than with those in the northern part and in the Pan-African domains where the surface heat-flow is 15– 20 mW m −2 higher

    How does alluvial sedimentation at range fronts modify the erosional dynamics of mountain catchments?

    No full text
    International audienceAt the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport-limited’, ‘detachment-limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end-member algorithms (the channellized-flow and the sheet-flow regimes) have been included for the alluvial fan-flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated.Our results indicate that addition of an alluvial apron increases the long-term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one).Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick-points in the river profile in the case of ‘detachment-limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick-points. ‘Transport-limited’ conditions do not create such knick-points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto-cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles
    • …
    corecore